// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2011 The Bitcoin Developers // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. // // Why base-58 instead of standard base-64 encoding? // - Don't want 0OIl characters that look the same in some fonts and // could be used to create visually identical looking account numbers. // - A string with non-alphanumeric characters is not as easily accepted as an account number. // - E-mail usually won't line-break if there's no punctuation to break at. // - Doubleclicking selects the whole number as one word if it's all alphanumeric. // #ifndef BITCOIN_BASE58_H #define BITCOIN_BASE58_H #include #include #include "bignum.h" #include "key.h" static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; // Encode a byte sequence as a base58-encoded string inline std::string EncodeBase58(const unsigned char* pbegin, const unsigned char* pend) { CAutoBN_CTX pctx; CBigNum bn58 = 58; CBigNum bn0 = 0; // Convert big endian data to little endian // Extra zero at the end make sure bignum will interpret as a positive number std::vector vchTmp(pend-pbegin+1, 0); reverse_copy(pbegin, pend, vchTmp.begin()); // Convert little endian data to bignum CBigNum bn; bn.setvch(vchTmp); // Convert bignum to std::string std::string str; // Expected size increase from base58 conversion is approximately 137% // use 138% to be safe str.reserve((pend - pbegin) * 138 / 100 + 1); CBigNum dv; CBigNum rem; while (bn > bn0) { if (!BN_div(&dv, &rem, &bn, &bn58, pctx)) throw bignum_error("EncodeBase58 : BN_div failed"); bn = dv; unsigned int c = rem.getulong(); str += pszBase58[c]; } // Leading zeroes encoded as base58 zeros for (const unsigned char* p = pbegin; p < pend && *p == 0; p++) str += pszBase58[0]; // Convert little endian std::string to big endian reverse(str.begin(), str.end()); return str; } // Encode a byte vector as a base58-encoded string inline std::string EncodeBase58(const std::vector& vch) { return EncodeBase58(&vch[0], &vch[0] + vch.size()); } // Decode a base58-encoded string psz into byte vector vchRet // returns true if decoding is succesful inline bool DecodeBase58(const char* psz, std::vector& vchRet) { CAutoBN_CTX pctx; vchRet.clear(); CBigNum bn58 = 58; CBigNum bn = 0; CBigNum bnChar; while (isspace(*psz)) psz++; // Convert big endian string to bignum for (const char* p = psz; *p; p++) { const char* p1 = strchr(pszBase58, *p); if (p1 == NULL) { while (isspace(*p)) p++; if (*p != '\0') return false; break; } bnChar.setulong(p1 - pszBase58); if (!BN_mul(&bn, &bn, &bn58, pctx)) throw bignum_error("DecodeBase58 : BN_mul failed"); bn += bnChar; } // Get bignum as little endian data std::vector vchTmp = bn.getvch(); // Trim off sign byte if present if (vchTmp.size() >= 2 && vchTmp.end()[-1] == 0 && vchTmp.end()[-2] >= 0x80) vchTmp.erase(vchTmp.end()-1); // Restore leading zeros int nLeadingZeros = 0; for (const char* p = psz; *p == pszBase58[0]; p++) nLeadingZeros++; vchRet.assign(nLeadingZeros + vchTmp.size(), 0); // Convert little endian data to big endian reverse_copy(vchTmp.begin(), vchTmp.end(), vchRet.end() - vchTmp.size()); return true; } // Decode a base58-encoded string str into byte vector vchRet // returns true if decoding is succesful inline bool DecodeBase58(const std::string& str, std::vector& vchRet) { return DecodeBase58(str.c_str(), vchRet); } // Encode a byte vector to a base58-encoded string, including checksum inline std::string EncodeBase58Check(const std::vector& vchIn) { // add 4-byte hash check to the end std::vector vch(vchIn); uint256 hash = Hash(vch.begin(), vch.end()); vch.insert(vch.end(), (unsigned char*)&hash, (unsigned char*)&hash + 4); return EncodeBase58(vch); } // Decode a base58-encoded string psz that includes a checksum, into byte vector vchRet // returns true if decoding is succesful inline bool DecodeBase58Check(const char* psz, std::vector& vchRet) { if (!DecodeBase58(psz, vchRet)) return false; if (vchRet.size() < 4) { vchRet.clear(); return false; } uint256 hash = Hash(vchRet.begin(), vchRet.end()-4); if (memcmp(&hash, &vchRet.end()[-4], 4) != 0) { vchRet.clear(); return false; } vchRet.resize(vchRet.size()-4); return true; } // Decode a base58-encoded string str that includes a checksum, into byte vector vchRet // returns true if decoding is succesful inline bool DecodeBase58Check(const std::string& str, std::vector& vchRet) { return DecodeBase58Check(str.c_str(), vchRet); } // Base class for all base58-encoded data class CBase58Data { protected: // the version byte unsigned char nVersion; // the actually encoded data std::vector vchData; CBase58Data() { nVersion = 0; vchData.clear(); } ~CBase58Data() { // zero the memory, as it may contain sensitive data if (!vchData.empty()) memset(&vchData[0], 0, vchData.size()); } void SetData(int nVersionIn, const void* pdata, size_t nSize) { nVersion = nVersionIn; vchData.resize(nSize); if (!vchData.empty()) memcpy(&vchData[0], pdata, nSize); } void SetData(int nVersionIn, const unsigned char *pbegin, const unsigned char *pend) { SetData(nVersionIn, (void*)pbegin, pend - pbegin); } public: bool SetString(const char* psz) { std::vector vchTemp; DecodeBase58Check(psz, vchTemp); if (vchTemp.empty()) { vchData.clear(); nVersion = 0; return false; } nVersion = vchTemp[0]; vchData.resize(vchTemp.size() - 1); if (!vchData.empty()) memcpy(&vchData[0], &vchTemp[1], vchData.size()); memset(&vchTemp[0], 0, vchTemp.size()); return true; } bool SetString(const std::string& str) { return SetString(str.c_str()); } std::string ToString() const { std::vector vch(1, nVersion); vch.insert(vch.end(), vchData.begin(), vchData.end()); return EncodeBase58Check(vch); } int CompareTo(const CBase58Data& b58) const { if (nVersion < b58.nVersion) return -1; if (nVersion > b58.nVersion) return 1; if (vchData < b58.vchData) return -1; if (vchData > b58.vchData) return 1; return 0; } bool operator==(const CBase58Data& b58) const { return CompareTo(b58) == 0; } bool operator<=(const CBase58Data& b58) const { return CompareTo(b58) <= 0; } bool operator>=(const CBase58Data& b58) const { return CompareTo(b58) >= 0; } bool operator< (const CBase58Data& b58) const { return CompareTo(b58) < 0; } bool operator> (const CBase58Data& b58) const { return CompareTo(b58) > 0; } }; // base58-encoded bitcoin addresses // Addresses have version 0 // The data vector contains RIPEMD160(SHA256(pubkey)), where pubkey is the serialized public key class CBitcoinAddress : public CBase58Data { public: bool SetHash160(const uint160& hash160) { SetData(0, &hash160, 20); return true; } bool SetPubKey(const std::vector& vchPubKey) { return SetHash160(Hash160(vchPubKey)); } bool IsValid() const { int nExpectedSize = 20; switch(nVersion) { case 0: break; default: return false; } return vchData.size() == nExpectedSize; } CBitcoinAddress() { } CBitcoinAddress(uint160 hash160In) { SetHash160(hash160In); } CBitcoinAddress(const std::vector& vchPubKey) { SetPubKey(vchPubKey); } CBitcoinAddress(const std::string& strAddress) { SetString(strAddress); } CBitcoinAddress(const char* pszAddress) { SetString(pszAddress); } uint160 GetHash160() const { assert(vchData.size() == 20); uint160 hash160; memcpy(&hash160, &vchData[0], 20); return hash160; } }; /** A base58-encoded secret key */ class CBitcoinSecret : public CBase58Data { public: void SetSecret(const CSecret& vchSecret) { assert(vchSecret.size() == 32); SetData(128, &vchSecret[0], vchSecret.size()); } CSecret GetSecret() { CSecret vchSecret; vchSecret.resize(32); memcpy(&vchSecret[0], &vchData[0], 32); return vchSecret; } CBitcoinSecret(const CSecret& vchSecret) { SetSecret(vchSecret); } CBitcoinSecret() { } }; #endif